Chứng minh
\(\left(19^{2005}+11^{2004}\right)\)chia hết cho 10
Chứng minh :
\(\left(19^{5^{2003}}+8^{2004}+5.7^{2003}\right)\)chia hết cho 10
Chứng minh :
\(\left(2^{2^n}-1\right)\)chia hết cho 5
Bài 1 : Chứng minh rằng :
a, ( 5 + 5^2 + 5^3 + .... + 5^100 ) chia hết cho 10
b, (1 + 3 + 3^2 + .... + 3^99 ) chia hết cho 40
c, ( 19^5^2003 + 8^2004 + 5.7^2003 ) chia hết cho 10
d, ( 2^2.n - 1 ) chia hết cho 5
e, ( 19^2005 + 11^2004 ) chia hết cho 10
Chứng minh rằng\(\left(-2007\right)^{2004}-\left(-2003\right)^{2004}\) chết cho 2, -2, 5, -5
Cho S =(2003+2003^2+2003^3+2003^4+....+2003^100)
Chứng minh S chia hết cho 2004
Chứng minh rằng:(-2007)2004 trừ (-2003)2004 chia hết cho 2,-2,5,-5
Chứng minh rằng : 2001 2003 và 20032004 không chia hết cho 2
1.Trong các số tự nhiên từ 1 đến 100 có bao nhiêu chữ số chia hết cho 2 nhưng không chia hết cho 5.
2.Tính tổng các số có 4 chữ số chia hết cho 5 nhưng không chia hết cho 2.
3.Chứng minh rằng:
a.\(\left(2003^{2002}+2005^{2004}\right)⋮2\)
b.\(\left(333^3+111^{111}\right)\) không chia hết cho 5
Chứng minh rằng : 52005+52004+52003 chia hết cho 31
Chứng minh :
a) 10^100 + 10^99 + 10^98 chia hết cho 222
b) 2007^2005 - 2003^2003 chia hết cho 10