Gọi \(a_1\)là số bình phương lên bằng 3
Gọi \(a_2\)là số bình phương lên bằng 5
Ta có \(a_1^2=3\)và \(a_2^2=5\)
Ta có \(a_1=\sqrt{3}\)và \(a_2=\sqrt{5}\)
Mà \(\sqrt{3}\)và \(\sqrt{5}\)là số vô tỉ
Nên \(a_1;a_2\notin Z\)
Gọi \(a_1\)là số bình phương lên bằng 3
Gọi \(a_2\)là số bình phương lên bằng 5
Ta có \(a_1^2=3\)và \(a_2^2=5\)
Ta có \(a_1=\sqrt{3}\)và \(a_2=\sqrt{5}\)
Mà \(\sqrt{3}\)và \(\sqrt{5}\)là số vô tỉ
Nên \(a_1;a_2\notin Z\)
chứng minh rằng không có số hữu tỉ nào bình phương bằng 12
Chứng minh rằng không tồn tại số hữu tỉ nào có bình phương bằng 7
Chứng minh rằng không tồn tại số hữu tỉ nào có bình phương bằng 2, 3, 6 ?
Bài Toán :
Chứng minh rằng ko có số hữu tỉ nào bình phương bằng 2 và 3
Chứng minh rằng bình phương của 1 số hữu tỉ là 1 số nguyên thì số đó là số nguyên
1.cmr ko có số hữu tỉ nào bình phương = 5;=12
2. cmr:bình phương của một số hữu tỉ là 1 số nguyên thì số đó là số nguyên
cho 3 số hữu tỉ khác nhau đôi một a, b, c .Chứng minh rằng A=1/(a-b)^2+1/(b-c)^2+1/(c-a)^2 là bình phương của 1 số hữu tỉ
CMR không có số hữu tỉ nào bình phương bằng 2.
Cho 2 số hữu tỉ a,b thỏa a3b +ab3 + 2a2b2 +2a +2b +1 =0. Chứng minh: 1-ab là bình phương của 1 số hữu tỉ.