Lời giải:
Để hàm $y$ luôn có cực trị thì \(y'=x^2-2mx-(2m+3)=0\) phải luôn có hai nghiệm phân biệt.
\(\Leftrightarrow \Delta'=m^2+2m+3>0\Leftrightarrow (m+1)^2+2>0\)
Điều này luôn đúng với mọi số thực $m$ nên ta có đpcm.
Lời giải:
Để hàm $y$ luôn có cực trị thì \(y'=x^2-2mx-(2m+3)=0\) phải luôn có hai nghiệm phân biệt.
\(\Leftrightarrow \Delta'=m^2+2m+3>0\Leftrightarrow (m+1)^2+2>0\)
Điều này luôn đúng với mọi số thực $m$ nên ta có đpcm.
Tìm đạo hàm của các hàm số sau:
1, \(y=3^{(\dfrac{x}{\ln(x)})}\)
2, \(y=\dfrac{1}{2}tan^2(x)+\ln(tan(x))\)
3, \(y=\sqrt[3]{ln^2(2x)}\)
Cho hai số thực x, y thay đổi thõa mãn \(log_{\sqrt{3}}\dfrac{x+y}{x^2+y^2+xy+2}=x\left(x-3\right)+y\left(y-3\right)+xy\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+2y+3}{x+y+6}\)
Tìm m để \(\sqrt{\left(2-\sqrt{3}\right)^x}+m\sqrt{\left(2+\sqrt{3}\right)^x}=4\) có 2 nghiệm x1,x2 sao cho x1-x2=\(\log_{2+\sqrt{3}}3\)
Chứng minh \(2017^{x^3}+2017^{\dfrac{1}{x^5}}>2018\)với mọi x>0
Tìm m để PT \(\left(m^2-1\right)\log_{\dfrac{1}{2}}^2\left(x^4-2\right)^2+4\left(m-5\right)\log_{\dfrac{1}{2}}\dfrac{1}{x-2}+4m-4=0\)
có nghiệm thuộc \(\left[\dfrac{5}{2};4\right]\)
xác định m để hàm số:
a. y=x3-3(2m+1)x2+(12m+5)x+2 đồng biến trên tập xác định
b. y=mx3-(2m-1)x2+(m-2)x-2 đồng biến trên tập xác định
c. y=\(\dfrac{-1}{3}mx^3+mx^2-x+3\) nghịch biến trên tập xác định
d. y=\(\dfrac{x^2+mx-5}{3-x}\) nghịch biến trên từng khoảng xác định
tìm giá trị của m để đồ thị của hàm số y=x3+x2+(m+2)x
1. có cực đại và cực tiểu
2. có 2 điểm cực trị nằm về 2 phía của trục tung
3. có 2 điểm cực trị với hoành độ âm
4. đạt cực tiểu tại x=2
Với giá trị nào của m thì đồ thị hàm số y=2x³+3( m-1 )x²+6(m-2)x-1 có cực đại , cực tiểu thoả mãn |Xcđ+Xct|=2
xác định m để hàm số y=\(\dfrac{x^2-4x+m}{1-x}\)
a. có cực trị và cực biểu
b. đạt cực trị tại x=2
c. đạt cực tiểu tại x=-1
4. Tính đạo hàm của các hàm số sau:
a) \(y = (3x^2-4x+1)^{-4}\)
b) \(y = 3^{x^2-1} + e^{-x+1}\)
c) \(y = \ln (x^2-4x) + \log_{3} (2x-1)\)
d) \(y =x . \ln x + 2^{\frac{x-1}{x+1}}\)
e) \(y = x^{-7} - \ln (x^2-1)\)
Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y=log3(x3 - mx + 1) xác định trên khoảng (1;+∞)
A. 2
B.1
C.3
D. Vô số