Gọi AOC và COB là hai góc kề bù , OM và ON theo thứ tự là các tia phân giác của hai góc ấy . Ta có :
\(\widehat{MOC}+\widehat{CON}=\frac{\widehat{AOC}}{2}+\frac{\widehat{COB}}{2}=\frac{\widehat{AOC}+\widehat{COB}}{2}=\frac{180^0}{2}=90^0\)
Ta thấy tia OC nằm giữa hai tia OM và ON nên \(\widehat{MOC}+\widehat{CON}=\widehat{MON}\)
Do đó MON = 900 . Vậy \(OM\perp ON\)
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.