Chứng minh rằng biểu thức sau không phụ thuộc vào giá trị của biến x,y
\(\frac{2}{xy}\div\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
Chứng minh với mọi x, y khác 0 thì giá trị của biểu thức \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(z+\frac{1}{z}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right)\)
không phụ thuộc vào giấ trị của biến
Với \(x\ne0\)và \(y\ne0\)Chứng minh rằng
\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)không phụ thuộc vào giá trị của x và y
Chứng minh biểu thức sau ko phụ thuộc vào biến x và y :
\(\frac{y}{x-y}-\frac{x^3-xy^2}{x^2+y^2}\left(\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right)\)
1) chứng minh biểu thức sao không phụ thuộc vào biến x,y ( x khác 0, y khác 0, x khác y )
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
ai nhanh tik 3 lần nhé <3
giúp mình bài này được không ạ ?
Bài 1) Rút gọn biểu thức
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
Bài 2) Chứng minh giá trị của biểu thức không phụ thuộc vào biến
\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right).\left(\frac{x^2+5x}{5}\right)\)
Tìm điều kiện xác định .Chứng minh với điều kiện đó biểu thức không phụ thuộc vào biến
a,\(\frac{2}{x-2}-\frac{2}{x^2-x-2}\left(1+\frac{3x+x^2}{x+3}\right)\)
b,\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
c,\(\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y^2-x^2}\right):\frac{2y}{x-y}\)
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của các biến (với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y
\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)
Cho các số thực x, y, z thỏa mãn \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ne0\)và x+y+z = 1. Chứng minh giá trị của biểu thức sau không phụ thuộc vào x, y, z
\(T=\frac{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\)