Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của góc nhọn \(\alpha\)
a) A = \(\frac{\cot^2\alpha-\cos^2\alpha}{\cot^2\alpha}-\frac{\sin\alpha.\cos\alpha}{\cot\alpha}\)
b) B = \(\left(\cos\alpha-\sin\alpha\right)^2+\left(\cos\alpha+\sin\alpha\right)^2+\cos^4\alpha-\sin^4\alpha-2\cos^2\alpha\)
c) C = \(\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
Cho tan \(\alpha\)=\(\frac{3}{5}\). Tính
A= \(\frac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
B=\(\frac{\sin\alpha\cdot\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
C=\(\frac{\sin^3\alpha\cdot\cos^3\alpha}{2\sin\alpha\cdot\cos^2\alpha+\cos\alpha\cdot\sin^2\alpha}\)
Giúp mình với . MÌnh cảm ơn
tính :
\(E=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha\cdot\cos^2\alpha\)
\(F=3\sin^3\alpha+\cos^3\alpha-2\sin^6\alpha+\cos^6\alpha\)
\(G=\sqrt{\sin^4\alpha+4\cos^2\alpha}+\sqrt{\cos^4\alpha+4\sin^2\alpha}\)
Chứng minh các biểu thức sau không phụ thuộc vào các góc nhọn \(\alpha\)
a) \(C=\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\)
b) \(D=\sin^2\alpha.\sin^2\beta+\sin^2\alpha.\cos^2\beta+\cos^2\alpha\)
c) E=\(\sin^6\alpha+\sin^6\beta+3.\sin^2\alpha.\cos^2\alpha\)
d) \(M=\frac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha+\sin\alpha\right)^2}{\cos\alpha.\sin\alpha}\)
Cho góc nhọn \(\alpha\). Tính giá trị biểu thức:
a) \(A=\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b) \(B=\sin^4\alpha\left(1+2\cos^2\alpha\right)+\cos^4\alpha\left(1+2\sin^2\alpha\right)\)
c) \(C=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
d)\( D=\left(3\sin\alpha+4\cos\alpha\right)^2+\left(4\sin\alpha-3\cos\alpha\right)^2\)
Cho \(\tan\alpha=\dfrac{3}{5}\). Tính giá trị của các biểu thức sau:
M=\(\dfrac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
N=\(\dfrac{\sin\alpha\times\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
CMR: với mọi góc nhọn \(\alpha\) thì biểu thức sau không phụ thuộc vào \(\alpha\) :
\(A=\left(\sin\alpha+\cos\alpha\right)^2-2\cdot\sin\alpha\cdot\cos\alpha-1\)
Câu 50**: Cho góc nhọn tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\) bằng
A. \(tan^2\alpha\) ; B . \(cot^2\alpha\) ; C . 0 ; D. 1 .
Rút gọn các biểu thức:
a)\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
b)\(\cot^2\alpha-\cos^2\alpha.\cot^2\alpha\)
c)\(\sin\alpha.\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
d)\(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)