Ta có:(x-y)2>0
=>x2-2xy+y2>0
=>x2+y2>2xy
=>x2+y2/2>xy
Dấu = xảy ra <=>x=y
\(\frac{x^2+y^2}{2}\ge xy\)
\(\Leftrightarrow\frac{x^2+y^2}{2}\ge\frac{2xy}{2}\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\left(\text{Luôn đúng với mọi x;y}\right)\)
\(\text{Vậy }\frac{x^2+y^2}{2}\ge xy\)
\(\text{Dấu "=" xảy ra khi }x=y\)
\(2.\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\text{ (luôn đúng với mọi x;y)}\)
\(\text{Vậy }2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\text{và dấu "=" xảy ra khi }a=b\)