nói thiệt năm nay mik mới lớp 6 mf làm lớp 7 là ko bít làm
nói thiệt năm nay mik mới lớp 6 mf làm lớp 7 là ko bít làm
1/ Biết \(\frac{a}{b}=\frac{c}{d}\), chứng minh
a) \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\left(\frac{a-d}{c-b}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
2/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\)
3/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh a=b=c
Cho \(\frac{a}{b}\) = \(\frac{c}{d}\) chứng minh :
a) \(\frac{a^2 + b^2}{c^2 + d^2}\) = \(\frac{a*b}{c*d}\)
b) \(frac{(a + b)^2}{(c + d)^2}\) = \(\frac{a*b}{c*d}\)
a/Cho biết \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\).Chứng minh rằng \(\frac{a}{b}\)=\(\frac{c}{d}\)
b/Cho biết (a+b+c+d)(a-b-c-d)=(a-b+c-d)(a+b-c-d) Chứng minh rằng \(\frac{a}{b}\)=\(\frac{c}{d}\)
a) cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
i) \(\frac{a}{a+b}\frac{c}{c+d}\)
ii)\(\frac{a-b}{c-d}=\frac{a+c}{b+d}.\)
b) Cho: \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\). Chứng minh: \(\frac{a}{b}=\frac{c}{d}.\)
CÁC BÀI TẬP DẠNG CHỨNG MINH TỈ LỆ THỨC
BÀI 1: Cho \(\frac{a}{b}=\frac{b}{d}\)Chứng minh \(\frac{a^2+b^2}{b^2+d^2}\)=\(\frac{a}{d}\)
Bài 2: Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) Chứng minh \(\left(\frac{â+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Bài 3: Cho \(\frac{a}{2015}=\frac{b}{2016}=\frac{c}{2017}\) Chứng minh \(\frac{\left(a-c\right)^2}{\left(a-b\right).\left(b-c\right)}=4\)
cho a;b;c;d thỏa mãn: \(\frac{a+b-c}{d}=\frac{b+c-d}{a}=\frac{c+d-a}{b}=\frac{d+a-b}{c}\)
Chứng minh : \(\frac{a+b}{c+d}=\frac{b+c}{d+a}=\frac{c+d}{a+b}\)
a,Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) chứng minh:
I,\(\frac{a}{a+b}=\frac{c}{c+d}\) II,\(\frac{a-b}{c-d}=\frac{a+c}{b+d}\)
b,Cho\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)chứng minh \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng ta có tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
a)\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
b) (a+b+c+d).(a-b-c-d)=(a-b+c-d).(a+b-c-d)
1) Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
2) Cho\(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{a^2-d^2}{c^2-d2}=\frac{ab}{cd}\)
b) \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
với a;b;c;d khác 0
chứng minh :
\(\frac{b+c+d}{a}+=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)