\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
TA có :
\(\frac{a}{b+c}>\frac{a}{a+b+c}\) (1)
........................... (2)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\left(3\right)\)
Từ (1) (2) và (3) =-> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
=> ĐPCM