\(\frac{1}{n}.\frac{1}{n+4}=\frac{1}{n\left(n+4\right)}=\frac{1}{4}.\frac{4}{n\left(n+4\right)}=\frac{1}{4}.\frac{\left(n+4\right)-n}{n\left(n+4\right)}=\frac{1}{4}\left(\frac{1}{n}-\frac{1}{n+4}\right)\)
Vậy ta có đpcm
Đúng 0
Bình luận (0)
ta xét vế phải
A=\(\frac{1}{4}\).(\(\frac{1}{n}-\frac{1}{n+4}\))=\(\frac{1}{4}\).(\(\frac{n+4}{n.\left(n+4\right)}\)-\(\frac{n}{n.\left(n+4\right)}\))
=\(\frac{1}{4}\).\(\frac{4}{n.\left(n+4\right)}\)=\(\frac{1}{n.\left(n+4\right)}\)
xét vế trái
B=\(\frac{1}{n}.\frac{1}{n+4}\)=\(\frac{1}{n.\left(n+4\right)}\)
vì A=B --> điều phải chứng minh
Đúng 0
Bình luận (0)