Phân tích đa thức thành nhân tử :
\(\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(19^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(20^4+\frac{1}{4}\right)}\)
Thầy tớ có cho gợi ý ạ :
Có dạng tổng quát của mỗi thừa số của tử số và mẫu số : \(n^4+\frac{1}{4}\)
Phân tích thành : \(n^4+\frac{1}{4}\)
\(=\left(n^2\right)^2+2n^2.\frac{1}{2}+\frac{1}{4}-n^2\)
\(=\left(n^2+\frac{1}{2}\right)^2-n^2\)
\(=\left(n^2-n+\frac{1}{2}\right)\left(n^2+n+\frac{1}{2}\right)\)
P/s : Giải giúp tớ nhé :33
\(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)....\left(1-\frac{4}{\left(2n-1\right)^2}\right)\)Với n>=1 (Rút gọn)
Chứng minh
a) \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2}\)
b) \(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}\)
Cho n là số nguyên dương.Hãy rút gọn biểu thức sau:
P=\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+\frac{5}{4+5^4}+....+\frac{2n-1}{4+\left(2n-1\right)^4}\)
Chứng minh với \(n\in N\)\(n\ge1\)
Ta có a)\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2}\)
b)\(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}\)
tính :
B=\(\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}..........\frac{\left(2n+1\right)^2}{\left(2n+2\right)^2-1}\)
CMR:Với moi so tu nhien n>=1thi:
a)\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}<\frac{1}{2}\)
b)\(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}=<\frac{1}{4}\)
Rút gọn:
B= \(\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{6^2-1}....\frac{\left(2n+1\right)^2}{\left(2n+2\right)^2-1}\)
cho n thuộc số tự nhiên chứng minh rằng 1/a+1^4 + 3/4+3^4 + ........+2n-1/4+(2n-1)^4 = n^2/4n^2 +1