Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)
Chứng minh bất đẳng thức sau với mọi n nguyên dương:
\(\sqrt[3]{\left(n+1\right)^2}-\sqrt[3]{n^2}< \frac{2}{3\sqrt[3]{n}}< \sqrt[3]{n^2}-\sqrt[3]{\left(n-1\right)^2}\)
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*
1) Chứng minh đẳng thức \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
2) Chứng minh \(\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}=1\)
Chứng minh đẳng thức
\(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}=\sqrt[3]{\sqrt[3]{2}-1}\)
Chứng minh đẳng thức sau:
\(\frac{4.\left(\sqrt{3}+1\right)}{\sqrt{3}-1}-\frac{2+\sqrt{3}}{2-\sqrt{3}}=1\)
Chứng minh đẳng thức sau:
\(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}-\sqrt[3]{a^2}}+\sqrt[3]{a}}=-\sqrt[3]{a-1}\)
Chứng minh bất đẳng thức sau:
\(\left(\sqrt[3]{\sqrt{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}}\right).\sqrt[3]{\sqrt{5-2}}-2,1< 0\)
Chứng minh bất đẳng thức sau:\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2}}>\sqrt{n}\)
Chứng minh các đẳng thức sau:
a) \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)