a/ \(-x^2-4x-8=0\)
\(\Leftrightarrow-x^2-2x-2x-8=0\)
\(\Leftrightarrow-\left[x^2+2x+2x+8\right]=0\)
\(\Leftrightarrow-\left[x\left(x+2\right)+2\left(x+2\right)+4\right]=0\)
\(\Leftrightarrow-\left[\left(x+2\right)\left(x+2\right)+4\right]=0\)
\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]=0\)
Với mọi x ta có :
\(+,\left(x+2\right)^2\ge0\)
\(+,4>0\)
\(\Leftrightarrow\left(x+2\right)^2+4>0\)
\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]< 0\)
\(\Leftrightarrow-x^2-4x-8\) vô nghiệm
b/ \(2x^2+4x+7=0\)
\(\Leftrightarrow2x^2+2x+2x+7=0\)
\(\Leftrightarrow2\left(x^2+x+x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow2\left[x\left(x+1\right)+\left(x+1\right)+\dfrac{5}{2}\right]=0\)
\(\Leftrightarrow2\left[\left(x+1\right)^2+\dfrac{5}{2}\right]=0\)
\(\Leftrightarrow2\left(x+1\right)^2+5=0\)
Với mọi x ta có :
\(2\left(x+1\right)^2\ge0\)
Và \(5>0\)
\(\Leftrightarrow2\left(x+1\right)^2+5>0\)
\(\Leftrightarrow2x^2+4x+7\) vô nghiệm