Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Thị Thuỳ Lâm

Chứng minh các phân số là phân số tối giản : \(\frac{n+1}{2n+3}\)\(\frac{8n+5}{6n+4}\)

Xyz OLM
19 tháng 4 2020 lúc 17:16

a)Gọi ƯCLN(n + 1 ; 2n + 3) = d

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản

b) Gọi ƯCLN(8n + 5 ; 6n + 4) = d

\(\Rightarrow\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}\Rightarrow}\left(24n+16\right)-\left(24n+15\right)⋮d}\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)

=> 8n + 5 ; 6n + 4 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{8n+5}{6n+4}\)là phân số tối giản

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn minh phú
Xem chi tiết
minh phu nguyen
Xem chi tiết
minh phu nguyen
Xem chi tiết
Nguyễn minh phú
Xem chi tiết
minh phu nguyen
Xem chi tiết
minh phu nguyen
Xem chi tiết
Nguyễn minh phú
Xem chi tiết
minh phu nguyen
Xem chi tiết
Vũ Phương Nhi
Xem chi tiết