x^5- 1/ x-1= x^4+ x^3+ x^2+ x+ 1
<=> x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)
<=> x^5 - 1 = x^5 + x^4 + x^3 + x^2 + x - x^4 - x^3 - x^2 - x - 1
<=> x^5 - 1 = x^5 - 1 (đúng)
=> đpcm
x^5- 1/ x-1= x^4+ x^3+ x^2+ x+ 1
<=> x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)
<=> x^5 - 1 = x^5 + x^4 + x^3 + x^2 + x - x^4 - x^3 - x^2 - x - 1
<=> x^5 - 1 = x^5 - 1 (đúng)
=> đpcm
chứng minh đẳng thức sau
( x+5 ) ( x+1 ) + ( x-2 ) ( x ^{ 2 } +2x+4 ) -x ( x ^{ 2 } +x-2 ) = 8x-3
help với
Chứng minh các biểu thức sau ko phụ thuộc vào x :
A= (3x-2). ( 3x+2) - (3x+1) mũ 2 - 3.(-2x-1)
B= (x+1).(x-1) - (x-2) mũ 2 - 4.(x+3)
NẾU ĐC THÌ DÙNG CÁC HÀNG ĐẲNG THỨC Ạ
Chứng minh các đẳng thức sau:
a) (x-1) (x^2 + x+ 1) = x^3 -1
b) (x^3+x^2y + xy^2 + y^3) (x-y) = x^4 - y^4
c) (x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2 yz + 2zx
Với x khác cộng truwd2 ,chứng minh đẳng thức :
(x/2+x -1?x-2-x+3/4-x mũ 2 ) : (xmux 2 -3/4-x mũ 2+1)=-(x-1) mũ 2
bài 1 chứng minh các đẳng thức sau
\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}=\dfrac{1}{x-y}\)
giải các pt sau:
x(x+3) - (2x-1) . (x+3) = 0
x(x-3) - 5 (x-3) = 0
3x + 12 = 0
2x (x-2) + 5 (x-2) = 0
b1. cho a+b+c=0. Chứng minh rằng:
a) (ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2
b) a^4+b^4+c^4=2(ab+bc+ca)^2
b2. Chứng minh các đẳng thức sau:
a) (2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)=2^32-1
b)100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2
b3. tìm x biết:
a) (2x-3)^2+(3x-1)^2=13(x-1)(x+3)
b)(3x-5)^2-2(2x+1)^2=(x-1)(x+2)
c)(x+1)(x-1)(x^2+1)-(x+3)(x-3)(x^2+9)=5
1) Tìm x biết: 5(x^2-1)+x(1-5x)= x-2
2) Chứng minh các đẳng thức sau:
a) (x+y+z)^3 = x^3+y^3+z^3+3(x+y)(y+z)(z+x)
b) x^2n+1 +y^2n+1 = (x+y)(x^2n-x^2n-1 y+x^2n-2 y^2- ...+x^2 y^2n-2 -xy^2n-1 +y^2n)
chứng minh đẳng thức (2x+3)(x-4)+(x-5)(x-2)=(3x-5)(x-4)