so sánh A và B
câu nào làm đc thì cảm ơn nhé <33 ko đc thì thôi bỏ đấy cũng đc
\(A=2^{16};;B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right);;B=3^{138}-1\)
\(A=1000^2+1003^2+1005^2+1006^2;;B=1001^2+1002^2+1004^2+1007^2\)
so sánh hai số:
A=(2+1)(2^2+1)(2^4+1).((2^16+1) và B=2^32-1
A=1000^2+1003^2+1005^2+1006^2 và
B=1001^2+1002^2+1004^2+1007^2
Đơn giản biểu thức
\(A=\frac{\left(a-2\right)\left(a-1014\right)}{a\left(a-b\right)\left(a-c\right)}+\frac{\left(b-2\right)\left(b-1004\right)}{b\left(b-a\right)\left(b-c\right)}+\frac{\left(c-2\right)\left(c-1004\right)}{c\left(c-a\right)\left(c-b\right)}\)
mn giúp mik vs
chứng minh rằng: 10012+10022+10042-10062=10002+10032+10052-10072
Chứng minh các hằng đẳng thức sau:
a) \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)
b) \(x^4+y^4+\left(x+y\right)^4=2\left(x^2+xy+y^2\right)^2\)
Mình đang cần lời giải ( chi tiết). Cảm ơn nhiều
Rút gọn biểu thức:
a) \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)
b) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
d) \(3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
Giup mình vs mình dang cần gấp
Rút gọn biểu thức:
a) \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)
b) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
d) \(3\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
Giup mình vs mình dang cần gấp
CM CÁC HẰNG ĐẲNG THỨC ;
\(\left(A^2+B^2+C^2\right)\left(X^2+Y^2+Z^2\right)=\left(AX+BY+CZ\right)^2+\left(AY-BX\right)^2+\left(AZ-CX\right)^2+\left(BZ-CY\right)^2\)
1.Chứng tỏ các đa thức sau không phụ thuộc vào biến x
a)\(x\cdot\left(2x+1\right)-x^2\left(x\cdot2\right)+\left(x^3-x+3\right)\)
b)\(4\cdot\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
2.Chứng minh đẳng thức sau :
a)\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=-2bc\)
b)\(a\left(1-b\right)+a\left(a^2-1\right)=a\left(a^2-b\right)\)