\(A=x^2+x+1=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
A= x2 + x + 1
A = x2 + 2. \(\dfrac{1}{2}\). x + (\(\dfrac{1}{2}\))2 +\(\dfrac{3}{4}\)
A = ( x + \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) ≥ \(\dfrac{3}{4}\)
Vậy, x2 + x + 1>0 với mọi x
Đúng thì like giúp mik nha. Thx bạn
\(x^2+x+1\)
\(=\) \(x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\) \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\) \(\left(x+\dfrac{1}{2}\right)^2+\left(1-\dfrac{1}{4}\right)\)
\(=\) \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\) luôn dương với mọi \(x\) ( 1 )
mà cộng thêm 1 lượng \(\dfrac{3}{4}\) luôn dương ( 2 )
Từ ( 1 ) và ( 2 ): ⇒ \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) luôn dương
⇒ \(x^2+x+1\) luôn dương với mọi giá trị của x