chứng minh rằng nếu a,b,c là các số thỏa mãn các bất đẳng thức :\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
thì \(\left|a\right|=\left|b\right|=\left|c\right|\)
cho a,b,c dương chứng minh bất đẳng thức
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
1) Cho a, b, c nguyên thỏa mãn: \(a^2+b^2=c^2\left(1+ab\right)\). Chứng minh rằng: \(a\ge c;b\ge c\)
2) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng: \(a^2+b^2+c^2\ge abc\)
3) Cho a, b, c dương và \(a+b+c\ge abc\). Chứng minh rằng ít nhất hai bất đẳng thức trong các bất đẳng thức sau là sai:
\(\frac{2}{a}+\frac{3}{b}+\frac{6}{c}\ge6\); \(\frac{2}{b}+\frac{3}{c}+\frac{6}{a}\ge6\); \(\frac{2}{c}+\frac{3}{a}+\frac{6}{b}\ge6\)
cho các số a,b,c dương, chứng minh bất đẳng thức: \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\ge\frac{9}{a+b+c}\)
Chứng minh rằng nếu a,b,c là các số thỏa mãn các bấc đẳng thức sau:\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{c^2}{a+b}+\frac{a^2}{b+c}+\frac{b^2}{c+a}\ge\frac{b^2}{b+a}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
Thì \(|a|=|b|=|c|\)
chứng minh bất đẳng thức
\(\frac{a^2c}{b}+\frac{b^2a}{c}+\frac{c^2b}{a}\ge a^2+b^2+c^2\\ \) với a,b,c là ác số thức dương
\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)(cosi ngược dấu)
Chứng minh tương tự được
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)
Cộng các vế của 3 bất đẳng thức
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}\)
chứng minh bất đẳng thức: \(\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\ge\frac{9}{2}\)trong đó a,b,c là số thực dương.
cho a,b,c là ba số thực dương. chứng minh bất đẳng thức
\(\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{ab+c^2}+\frac{b^2+c^2}{bc+a^2}+\frac{c^2+a^2}{ca+b^2}\ge\frac{9}{2}\)