2B=1+1/2+1/2^2+..+1/2^19
2B-B=(1+1/2+1/2^2+..+1/2^19) -(1/2+1/2^2+1/2^3..+1/2^20)
B=1-1/2^20 <1
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{20}}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{19.20}\)
\(B< \left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{20}\right)\)
\(B< \left(\frac{1}{2}-\frac{1}{20}\right)\)
\(B< \frac{9}{20}< 1\)
\(\Rightarrowđpcm\)
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(\Rightarrow2B=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
\(\Rightarrow2B=1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
\(\Rightarrow2B-B=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
\(\Rightarrow B=1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{19}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{20}}\)
\(\Rightarrow B=1-\frac{1}{2^{20}}\)\(< 1\)
Vậy \(B< 1\)