cho a^2+b^2+(a-b)^2=c^2+d^2+(c-d)^2.chung minh a^4+b^4+(a-b)^4=c^4+d^4+(c-d)^4
cho a/b = c/ d ; chung minh a, a/ b= 3a+2c /3b+2d ;b,a^2+ c^2 /b^2 + d^2 =ac/bd
cho \(a^2+b^2+\left(a-b\right)^2=c^2+d^2+\left(c-d\right)^2\).chung minh \(a^4+b^4+\left(a-b\right)^4=c^4+d^4+\left(c-d\right)^4\)
a,b,c,d>0 chung minh rang 2< (a+b)/(a+b+c)+(b+c)/(b+c+d)+(c+d)/(c+d+a)+(d+a)/(d+a+b)<3
cho a,b,c.d thuoc Z, thoa man a<=b<=c<=d va a+d=c+b Chung minh
a) a^2 +b^2 +c^2 +d^2 la tong 3 so chinh phuong
B) bc >=ad
cho các số a,b,c,d tùy ý và \(a\ge b\ge c\ge d\ge0\)chung minh :1)\(a^2-b^2+c^2\ge\left(a-b+c\right)^2\);2)\(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\).dấu bằng của bất đẳng thức xảy ra khi nào
Cho a,b,c,d thoa man : a2 - b2 =a .
Chung minh rang : a2c2 - b2d2 = a2 + d2
1.Chứng minh các đẳng thức sau
a)(a+b+c)^2+(b+c-a)^2+(c+a-b)^2= 4(a^2+b^2+c^2)
b)(a+b+c+d)^2+(a+b+c-d)^2+(a+c-b-d)^2+(a+d-b-c)^2= 4(a^2+b^2+c^2+d^2)
c)(a^2-b^2-c^2-d^2)+2(ab-bc+cd+da)^2= (a^2+b^2+c^2+d^2)-2(ab-ad+bc+dc)^2
d)(a+b+c)^2+a^2+b^2+c^2= (a+b)^2+(b+c)^2=(c+a)^2
2. Chứng minh rằng
a) Nếu (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì a/b=c/d
b) Nếu (a+b+c)^2= 3(ab+bc+ca) thì a=b=c
CHUNG MINH
a2+b2+c2+d2>0
VOI a_b+c+d =1