Bài 1: a) Cho a+b+c=6 và ab+bc+ac=9. Chứng minh rằng 0<a<4; 0<b<4; 0<c<4.
b) Cho a+b+c=2 và a2+b2+c2=2. Chứng minh rằng: \(0\le a\le\frac{4}{3};\)\(0\le b\le\frac{4}{3};\)\(0\le c\le\frac{4}{3}.\)
Cho ab+bc+ac= 3abc và a,b,c >0
Chứng minh \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{3}{\sqrt{2}}\)
1, Cho x+y=2 Chứng minh x4+y4\(\ge2\)
2,Với mọi a,b Chứng minh a4+ b4\(\ge a^3b+ab^3\)
3, Cho a>0 , b>0. Chứng minh \(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\)
4, Chứng minh: x4+y4\(\le\frac{x^6}{y^2}+\frac{y^6}{x^2}\)với xva2 y khác 0.
Cho các số dương a,b,c sao cho a+b+c=3
Chứng minh rằng \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{3}{2}.\)
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{c}+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
Bài tập 3* . Chứng minh rằng :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)\) với x, y > 0
Bài tập 5* . Chứng minh rằng :
\(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)với \(0\le a,b,c\le1\)
Bài tập 9* . Chứng minh rằng :
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{1}{abc}\)với a, b, c > 0
Cho a+b+c=2 và 2 +b2+c2=2. Chứng minh: \(0\le a\le\frac{4}{3};0\le b\le\frac{4}{3};0\le c\le\frac{4}{3}\)
Bài 1: Chứng minh rằng với mọi a, b, c, d>0, ta có:
\(\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\)
Bài 2: Cho x,y,z>0 và x2+y2+z2=3. CMR: \(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{3}{2}\)
Bài 3: Cho a,b,c>1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\).CMR: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{a+b+c}\)
Cho a,b >0 thỏa :\(a^2+b^2=4.\)Chứng minh:\(\frac{a+b}{\sqrt{a^2-4}}\le\sqrt{\frac{3}{2}}\)
giúp mình với ,gấp lắm ,thank nhìu