Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\) (đpcm)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Ta có:
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)+a^2+b^2+c^2=\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
Bạn Đinh Đức Hùng Trả lời sai
Vì lớp 8 chưa học bất đẳng thức Cauchy-Schwarz