TH1: Đặt: a=3k (K \(\in\)Z)
=> A= (3k+11)(3k+1998)+(3k+2015)
=> A= 3k+1998)(3k+11)(3k+2015)
=> A= 3(k+666)(3k+11)(3k+2015)
A= 3(k+666)(3k+11)(3k+2015) chia hết cho 3 (vì 3 chia hết cho 3) (đpcm)
TH2: a=3k+1
=> A= (3k+1+11)(3k+1+1998)(3k+1+2015)
=> A= (3k+12)(3k+1999)(3k+2016)
=> A= 3(k+4)(3k+1999)(3k+2016)
A= 3(k+4)(3k+1999)(3k+2016) chia hết cho 3 (vì 3 chia hết cho 3)
TH3: a=3k+2
=> A= (3k+2+11)(3k+2+1998)(3k+2+2015)
=> A= (3k+13)(3k+2000)(3k+2017) không bao giờ chia hết cho 3
=> TH3 a=3k+2 là vô lí
Vậy với 2 TH luôn được A chia hết cho 3