1) Phân tích nhân tử
a) a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc
b) ab(a+b)-bc(b+c)-ca(c-a)
c) (x^2+x)^2+2(x^2+x)-3
2) Cho 3 số a,b,c khác 0 biết
ab(a-b)+bc(b-c)+ca(c-a)=0.Chứng minh a=b=c
Cho a+ b + c =0 (a,b,c khác 0). Chứng minh rằng a^2/bc+b^2/ca+c^2/ab-3=0
Cho a,b,c khác 0 và phân biệt thỏa mãn a^3+b^3+c^3=3abc
Tính M=ab^2/a^2+b^2-c^2 +bc^2/b^2+c^2-a^2 + ca^2/c^2+a^2-b^2
Cho các số thực a,b,c khác 0 thỏa mãn ab+bc+ca=1 và a2b+c=b2c+a=c2a+b. Chứng minh rằng a=b=c
Các bạn ơi cho mình hỏi:
Cho a,c,b khác 0 và phân biệt t/m: a^3 +b^3 +c^3=3abc
Tính M= ab^2/a^2+b^2-c^2 + bc^2/b^2+c^2-a^2 + ca^2/ c^2+a^2-b^2
CẢM ƠN CÁC BẠN NHIỀU!!!
1/Giải phương trình sau :
\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)
2/ Cho a, b, c là các số khác 0 và đôi một khác nhau , thỏa mãn đẳng thức a + b + c = 0 . Chứng minh rằng :
\(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2=0\)
Cho \(ab+bc+ca=0\) và a ,b,c là 3 số khác 0.
Chứng minh \(\frac{3a^2-bc}{a^3bc}=\frac{1}{b^3}+\frac{1}{c^3}\)
cho c^2 +2(ab -ac -bc ) =0 và b khác c, a+b khác 0. Chứng minh a^2 +(a-c)^2 /b^2+(b-c)^2 = a-c / b-c
A, cho abc = 1 và a+b+c = 1/a +1/b +1/c. Chứng minh tồn tại một trong 3 số a,b,c bằng 1
B, chứng minh rằng nếu a + b + c = n và 1/a + 1/b + 1/c = 1/n thì tồn tại một trong ba số bằng n
C, chứng minh rằng nếu 3 số a,b,c khác 0 thì thỏa mãn đẳng thức
a2 -- b2 / ab + b2 -- c2 /bc + c2 -- a2/ca =0
thì tồn tại hai số bằng nhau