Tìm n để 7n + 1 và 8n + 3 là 2 số nguyên tố cùng nhau
Với giá trị nào của a thì 7a + 1 và 8a + 3 là 2 số nguyên tố cùng nhau
Tìm n thuộc N để A = n3-6n2+9n-1la2 số nguyên tố
Tìm số tự nhiên n để biểu thức 5n3-9n2+15n-27 nhận giá trị là số nguyên tố.
1. Tìm để biểu thức sau là số nguyên tố : A = 3n3 – 5n2 + 3n – 5 .
2. a) Tìm n ∈ N để giá trị của biểu thức A = n3 + 2n2 – 3 là :
1 ) số nguyên tố ; 2) Bằng 2013
b) Tìm n ∈ N để giá trị của biểu thức B = n4 – n3 – 6n2 + 7n – 21 là số nguyên tố
3. Cho A = x4 + 4 và B = x4 + x2 + 1
a) Tìm GTLN của A - B
b) Phân tích A và B thành nhân tử
c) Tìm các số tự nhiên x để A và B cùng là số nguyên tố .
4. Tìm n ∈ N để : a) A = n.2n+1 ⋮ 3
b) B = 12n2-5n – 25 là số ngưên tố.
c) C = 8n2+10 n+ 3 là số nguyên tố
d) D = (n2+3n)/ 4 là số ngyên tố
5. Chứng minh ∀ số tự nhiên n khác không thì :
a) Số (6n + 1) và số (5n + 1) nguyên tố cùng nhau
b) Số (2n - 1) và số (2n + 1) nguyên tố cùng nhau
6. a) Tìm a N để (a + 1) ; (4a2 + 8a + 5) và (6a2 + 12a + 7) đồng thời là các số nguyên tố .
b) Chứng minh : nếu p là số nguyên tố khác 3 thì số A = 3n + 2014 + 2012p2 là hợp số ,với n N
7. Chứng minh rằng với mỗi số nguyên tố p đều tồn tại vô số số tự nhiên n sao cho2n - n ⋮ p
8. Tìm tất cả các số nguyên tố p sao cho p2 + 14 là số nguyên tố.
9. Cho p ≥ 7 là số nguyên tố. CMR: 11...1( p-1 chữ số 1) ⋮ p.
10. Cho 4 số nguyên dương a , b , c , d thỏa mãn : a2 + b2 = c2 + d2
Chứng minh a + b + c + d là hợp số
11. Tìm số tự nhiên n sao cho số p = n3 – n2 – 7n + 10 là số nguyên tố.
Chứng minh rằng (10n-9n-1): hết cho 27 với n thuộc N*
Tìm số tự nhiên n để giá trị của biểu thức là số nguyên tố:
a) \(12n^2-5n-25\)
b) \(8n^2+10n+3\)
c) \(\dfrac{n^2+3n}{4}\)
Câu 1 : Thừa số nguyên tố lớn nhất khi phân tích ra số \(2^{16}\) - 16 ra thừa số nguyên tố
Câu 2 : Giá trị nguyên n lớn nhất để \(\frac{n^2-38}{n+1}\) là một số nguyên
Câu 3 : Số dư khi chia \(2^{30}\) cho \(10^3\)
Cho A= (n-1).(n-3).(n-4).(n-6)+9. Chứng minh a luôn là số chính phương với mọi giá trị nguyên của x