\(A=7+7^2+.....+7^{200}\)
\(7A=7^2+7^3+7^4+.....+7^{201}\)
\(7A-A=6A=7^{201}-7\)
\(\Rightarrow6A+7=7^{201}\)
Vậy 6A + 7 là 1 luỹ thừa của 7
\(A=7+7^2+.....+7^{200}\)
\(7A=7^2+7^3+7^4+.....+7^{201}\)
\(7A-A=6A=7^{201}-7\)
\(\Rightarrow6A+7=7^{201}\)
Vậy 6A + 7 là 1 luỹ thừa của 7
cho A= 1+7+7^2+7^3+...+7^98
chứng minh rằng A chia hết cho7. Chứng minh 6A+1 là một lũy thừa của 7
Cho A= 7^1+7^2+7^3+....+7^100
Chứng minh 6A+7 là lũy thừa cơ số 7
Cho A = \(7+7^2+7^3+..+7^{100}\)
Chứng minh rằng 6A +7 là một lũy thừa của 7.
S=7+72+73+......+749
CHỨNG MINH RẰNG : S - 7 CHIA HẾT CHO 19
CMR : 6S +7 LÀ LŨY THỪA CỦA 7
S=7+72+73+......+749
CHỨNG MINH RẰNG : S - 7 CHIA HẾT CHO 19
CMR : 6S +7 LÀ LŨY THỪA CỦA 7
Cho \(A=7+7^2+7^3+7^4+...+7^{48}+7^{49}.\)
a)Chứng minh rằng:\(S-7\)chia hết cho 19.
b)Chứng minh rằng:\(6S+7\)là lũy thừa của 7.
cho S=7+72+73+...+749
Chứng tỏ rằng 6S+7 là lũy thừa của 7?
A=7^1+7^2+7^3+7^4+.....+7^2020
a) Thu gọn A
b) Chứng minh rằng 6a+7=7^2021
c) Chứng minh rằng Achia hết cho 8
d) Chứng minh rằng (a+7^2021) chia hết cho 8
e) so sánh 6a+7 với B=343^12345
Chứng minh rằng tồn tại 1 lũy thừa của 7 mà 3 chữ số tận cùng của nó là 001