Sửa: \(495a+1035b⋮45,\forall a;b\)
Ta có \(495a+1035b=45\left(11a+23b\right)⋮45\)
Sửa: \(495a+1035b⋮45,\forall a;b\)
Ta có \(495a+1035b=45\left(11a+23b\right)⋮45\)
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
chứng minh rằng với mọi số tự nhiên a thì 10^a+45.a-1 chia hết cho 27
a) chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4) (n+5) chia hết cho 2
b) chứng minh n+2012 và n+2013 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n.
với a, b.c.d là cá số tự nhiên khác o thỏa mãn ab=cd chứng minh rằng A=a^n +b^n+c^n+d^n là một hợp số với mọi số tự nhiên n
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45
Bài 6
a, chứng minh rằng với mọi số tự nhiên n thuộc N thì 60n +15 chia hết cho 15 nhưng không chia hết cho 30
b, chứng minh rằng không có số tự nhiên nào chia 15 dư 6 , chia 9 dư 1
c, chứng minh rằng 1005a +2100b chia hết cho 15 , với mọi số tự nhiên a,b thuộc N
d, chứng minh rằng A= n2+n+1 không chia hết cho 2 và 5 với mọi số tự nhiên n thuộc N
a) chứng minh rằng khi nla số tự nhiên khác 0 thì n+1 là 2 số nguyên tố cùng nhau.
b)chứng minh rằng với mọi số tự nhiên n thì các số sau là nguyên tố cùng nhau :2n+3 va 4n+8
cho a là số tự nhiên lẻ , b là 1 số tự nhiên . chứng minh rằng các số a va ab + 4 là so nguyên tố cùng nhau| mọi người ơi trả lời dùm em với !!!
chứng minh rằng với mọi a,b là số tự nhiên khác 0 thì:
( a+b ).( 1/a +1/b )>hoặc =4