Ta có : 22n = ( 22 )n = 4n mà 4 \(\equiv\)1 ( mod3 )
=> 4n \(\equiv\)1 ( mod3 ) ( n thuộc N )
=> 4n = 3k + 1 ( k thuộc N )
=> 2 ^ 2 ^ 2n = 23k+1 = 8k . 2 mà 8 \(\equiv\)1 ( mod7 )
=> 8k \(\equiv\)1 ( mod7 )
=> 2 . 8k \(\equiv\)2 ( mod7 )
Hay 2 ^ 2 ^ 2n \(\equiv\)2 ( mod7 ) => 2 ^ 2 ^ 2n + 5 \(\equiv\)2 - 2 ( mod7 )
Mà 5 \(\equiv\)- 2 ( mod7 ) => 2 ^ 2 ^ 2n + 5 \(\equiv\)0 ( mod7 )
Vậy 2 ^ 2 ^ 2n + 5 chia hết cho 7 ( dpcm )