Cho x, y, z dương
Chứng minh rằng
\(A = { x^2 \over x^2+2xy} + { y^2 \over y^2+2yz} + {z^2 \over z^2+2xz}= {x^2+y^2+z^2 \over (x+y+z)^2}\)
Giúp em với ạ !! Hichic
Cho x, y, z là các số lớn hơn hoặc bằng 1. C/mr
\({1\over 1+x^2}+{1\over 1+y^2}+{1\over 1+z^2}>={3\over 1+xyx} \)
Cho x,y,z >0 thỏa mãn \( {1 \over x}+ {1\over y} + {1\over z}=3\)
Chứng minh rằng \({x\over x^4+1+2xy}+{y\over y^4+1+2yz} + {z\over z^4+1+2zx}<= {3\over4}\)
Cho 2 số dương x, y có x+y=1. Tìm GTNN của biểu thức B=\( (1-{1\over x^2}) (1-{1\over y^2})\)
cho các số dương x,y và x+y=1.Tìm GTNN cua \(A = {1 \over x^2+y^2}+{1 \over x*y}\)
Chứng minh \(P = {1 \over \sqrt{x^3+1}} + {1\over\sqrt{y^3+1}} +{1\over\sqrt{z^3+1}}>1\)
Bài 1 : Cho x>1, y> 1. Tìm GTNN của P=\({x^2\over y-1}\) + \({y^2\over x-1}\)
Bài 2: Cho a,b \(\ge\)0 ; a2+b2 = 11. Tìm GTNN của M=ab + \({1\over a+b}\)
rút gọn biểu thức:
\({ 3-\ 2\sqrt{2} \over 1-√2}\)\({5 \ \sqrt{6} -15 \over 6-2√6}\)\({x \ \sqrt{x}-y√y \over x-y}\)(√5+√3+√2)*(√5+√2-√3)a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)