1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
chứng minh rằng n^2 + n + 1 không chia hết 4,2,5
Chứng minh rằng n! không chia hết cho 2 mũ n
10 mũ 10+14 chia hết cho 6
10 mũ 50+ 5 chia hết cho15
10 mủ 200006+8 chia hết cho72
Chứng minh: n^2+3n+4 không chia hết cho 169.
Chứng Minh Rằng:
a) n^2 + n + 3 không chia hết cho 2 ( n thuộc Z )
b) n^3 + 3n^3 + 2n chia hết cho 6 ( n thuộc Z )
Chứng minh rằng với mọi n thì:
a, P = n2 + 3n + 4 không chia hết cho 49
b, Q = n2 + 5n + 16 không chia hết cho 169
chứng minh rằng nếu n thuộc Z thì n^2 + 11n +39 không chia hết cho 49
chứng minh ( toán đồng dư )
a, 2n+1 không chia hết cho 7 với mọi số tự nhiên n
b, 9n+1 không chia hết cho 100 với mọi số tự nhiên n