chép :https://olm.vn/hoi-dap/detail/99048356827.html
chép :https://olm.vn/hoi-dap/detail/99048356827.html
cho A =\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
Chứng minh A <\(\frac{2015}{2016}\)
Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}+\frac{1}{2016^2}< 1\) 1
Chứng minh rằng \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< 1\)
cho biết \(A=\frac{2016^2+1^2}{2016.1}+\frac{2015^2+2^2}{2015.2}+\frac{2014^2+3^2}{2014.3}+...+\frac{1009^2+1008^2}{1009.1008}\) ;B=\(\frac{1+1+1+1+...+1+1}{2+3+4+..+2017}\)tìm \(\frac{A}{B}\)
chứng minh S = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
Chứng minh rằng \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2016}}<1\)
Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}<1\)
Chứng minh : \(S=\frac{1}{4^1}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2016}{4^{2016}}>\frac{1}{2}\)
Cho biểu thức sau: \(P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+.....+\frac{2015}{5^{2015}}+\frac{2016}{5^{2016}}\)
Chứng minh 1/4 < P< 1/3