chung minh : 1/5^3+1/6^3+1/7^3+........+1/2004^3 <1/40
chung minh rang 1/5^3+1/6^3+1/7^3+..........+1/2004^3<1/40
Chứng minh rằng : 1/65 < 1/5^3 + 1/6^3 + 1/7^3 + ... + 1/2004^3 <1/40
chứng minh rằng
\(\frac{1}{5^3}+\frac{1}{6^3}+\frac{1}{7^3}+...+\frac{1}{2004^3}\)<\(\frac{1}{40}\)
1/5^3+1/6^3+...+1/2004^3<1/40
chứng minh rằng \(\frac{1}{65}\)<\(\frac{1}{5^3}+\frac{1}{6^3}+...+\frac{1}{2004^3}\)<\(\frac{1}{40}\)
A=1+3+3^2+3^3+3^4+3^5+3^6+3^7 chung minh A=(3^8-1):2
chứng minh rằng:1/5^3+1/6^3+1/7^3+....+1/2013^3<1/40
cho C=1+4+4^2+4^3+4^5+4^6 tinh 4A và chung minh A= (4^7-1):3