\(1.3.....99=\frac{1.3....99.2.4.6....100}{2.4.6....100}\)
\(=\frac{1.2.3.4.5......99.100}{2^{50}.\left(1.2.3....50\right)}\)
\(=\frac{51.52.53...100}{2.2.2...2}\)
\(=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\)
\(\Rightarrow1.3...99=\frac{51}{2}.\frac{52}{2}....\frac{100}{2}\left(đpcm\right)\)
Ta có :\(\frac{51}{2}\) . \(\frac{52}{2}\) .... \(\frac{100}{2}\)
=\(\frac{51.52....100}{2.2....2}\)
=\(\frac{51.52....100}{2.2....2}\) . \(\frac{2.4.6....100}{2.4.6....100}\)
=\(\frac{51.52....100.2.4.6...100}{2.4.6...100.2.2...2}\)
=\(\frac{1.2.3.4...100}{2.4.6...100}\)
=\(\frac{\left[1.3.5....99\right].\left[2.4.6...100\right]}{2.4.6...100}\)
=1.3.5...99[đpcm]