S=1/3+1/3^2+1/3^3+...+1/3^99
=>3S=1+1/3+1/3^2+1/3^3+....+1/3^98
=>3S-S=(1+1/3+1/3^2+...1/3^98)-(1/3+1/3^2+...+1/3^99)
=>2S=1-1/3^99
=>2S=(3^99-1)/3^99
=>S=(3^99-1)/2.3^99
=>S=1/2-1/2.3^99.
Vì 1/2-1/2.3^99<1/2
=>S<1/2 (đpcm)
Ta có:1/(3^n)+1/(3^(n+1))=2/(3^(n+1)
Áp dụng ta có:1-1/3=2/3
1/3-1/(3^2)=2/(3^2)
1/(3^2)-1/(3^3)=2/(3^3)
1/(3^98)-1/(3^99)=2/(3^99).
Cộng từng vế các phép tính với nhau ta có:1-1/(3^99)=2M.
Mà 1-1/(3^99)<1 nên 2M<1 nên M<1/2(điều phải chứng minh)