Ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{4^2}=\frac{1}{4.4}<\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)
.......................
\(\frac{1}{100^2}=\frac{1}{100.100}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Cộng vế với vế , ta được :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Vì 99 < 100 nên \(\frac{99}{100}<1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<1\left(đpcm\right)\)
1/2^2 < 1/(1.2)= 1-1/2
1/3^2 <1/(2.3)=1/2-1/3
1/4^2 <1/(3.4)=1/3-1/4
......
1/100^2 < 1/99-1/100
cộng vế với vế ta được 1/2^2 +1/3^2+...+1/100^2< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100
=>1/2^2 +1/3^2+...+1/100^2<1
=> ĐPCM
Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};............;\frac{1}{100^2}<\frac{1}{99.100}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+.............+\frac{1}{100^2}\)\(<\frac{1}{1.2}+\frac{1}{2.3}+............+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.............+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}<1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+.............+\frac{1}{100^2}<1\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(<1-\frac{1}{100}\)
\(<\frac{99}{100}\)
\(=>\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<\frac{99}{100}<1\left(đpcm\right)\)
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100