Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Thu Ha

Chứn minh rằng: 12002 +22002 +32002 +.....+ 20022002 chia hết cho 11.

Lãnh Hạ Thiên Băng
19 tháng 10 2016 lúc 7:15

P =1^2002 + 2^2002 + 3^2002 +4^2002 +...+ 2002^2002 

Q = 1^2+2^2+..+ 2002^2, ta có Q = 1/6*2002*2003*(2.2002+1) ≡ 0 (mod 11) 
{Công thức 1^2 +2^2 +...+ n^2 = n(n+1)(2n+1)/6} 

P - Q = (1^2002 -1^2) + (2^2002-2^2) +..+ (2^2002 -2002^2) 

Theo định lý Fermat nhỏ thì a^(p-1) ≡ 1 (mod p) 
=> a^10 ≡ 1 (mod 11) 
=> a^2000 ≡ 1 (mod 11) 
=> a^2002 ≡ a^2 (mod 11) (*) 

Từ (*) => P - Q ≡ 0 (mod 11) 
mà Q ≡ 0 (mod 11) theo cm trên 

=> P ≡ 0 (mod 11)


Các câu hỏi tương tự
Lê Thu Hà
Xem chi tiết
Lê Như Quỳnh
Xem chi tiết
NGUYỄN HƯƠNG GIANG
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
mai sương
Xem chi tiết
Sakura
Xem chi tiết