cho x,y>0 thỏa mãn \(x+y\le1\). Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)
Cho x,y là hai số thực khác 0 thỏa mãn \(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A = 2013 - xy
Cho x>0, y>0 thỏa mãn x2+y2=1. Tìm giá trị nhỏ nhất của biểu thức A=\(\frac{-2xy}{1+xy}\)
Với x,y là những số thực thỏa mãn đẳng thức x2y2 + 2y+1=0, tìm giá trị lớn nhất và nhỏ nhất của biểu thức P=\(\frac{xy}{3y+1}\)
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
Gọi x, y là các số thực thay đổi , thỏa mãn điều kiện: x>y>0 và xy=4
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{x^2+y^2}{x-y+1}\)
Cho x; y>0 thoả mãn \(x+y\le1\). Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)là
Cho x, y là các số thực dương thỏa mãn xy=1. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}\)
Cho x,y,z>0 thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{\sqrt{2x^2+y^2}}{xy}+\frac{\sqrt{2y^2+z^2}}{yz}+\frac{\sqrt{2z^2+x^2}}{zx}\)