Ta có ; \(\frac{1-x_1}{99}=\frac{2-x_2}{98}=\frac{3-x_3}{97}=...=\frac{99-x_{99}}{1}\)
\(\Leftrightarrow\frac{1-x_1}{99}+1=\frac{2-x_2}{98}+1=\frac{3-x_3}{97}+1=...=\frac{99-x_{99}}{1}+1\)
\(\Leftrightarrow\frac{100-x_1}{99}=\frac{100-x_2}{98}=\frac{100-x_3}{97}=...=\frac{100-x_{99}}{1}\)
Áp dụng t/c dãy tỉ số bằng nhau : \(\frac{100-x_1}{99}=\frac{100-x_2}{98}=\frac{100-x_3}{97}=...=\frac{100-x_{99}}{1}\)
\(=\frac{\left(100-x_1\right)+\left(100-x_2\right)+\left(100-x_3\right)=...=\left(100-x_{99}\right)}{1+2+3+...+98+99}\)
\(=\frac{100.99-\left(x_1+x_2+x_3+...+x_{99}\right)}{1+2+3+...+99}=\frac{100.99-4950}{\frac{99.100}{2}}=1\)
\(\Rightarrow x_i=100-\left(100-i\right)=i\)với \(i=1,2,3,...,99\)
\(\frac{1-x_1}{99}=\frac{2-x_2}{98}=\frac{3-x_3}{97}=...=\frac{99-x_{99}}{1}=\)\(\frac{\left(1+2+3+..+99\right)-\left(x_1+x_2+x_3+...+x_{99}\right)}{99+98+97+...+1}\)\(=\frac{4950-4950}{4950}=0\)
\(\Rightarrow1-x_1=2-x_2=3-x_3=...=99-x_{99}=0\)
\(\Rightarrow x_i=i-0\left(i=1,2,3,...,99\right)\)