\(P=\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(\frac{4a^2+b}{4a^2-b}+1\right)\)
\(=\left[\frac{2a+b}{\left(2a-b\right)\left(2a+b\right)}-\frac{3b}{\left(2a+b\right)\left(2a-b\right)}-\frac{2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right]:\frac{4a^2+b+4a^2-b}{4a^2-b}\)
\(=\frac{2a+b-3b-4a+2b}{4a^2-b}\cdot\frac{4a^2-b}{8a^2}\)
\(=\frac{-2a}{8a^2}\)
\(a< 0\Rightarrow-2a>0\Rightarrow\frac{-2a}{8a^2}>0\left(8a^2\ge0\right)\)
=> ĐFCM