Cho các số a, b, c, x, y, z thỏa mãn: abc≠0 và x/a+2b+c = y/2a+b-c = z/4a-4b+c.
Chứng minh: a/x+2y+z = b/2x+y-z = c/4x-4y+z (với giả thiết các tỉ số đều có nghĩa)
Cho các số a,b,c,x,y,z thỏa mãn:abc khác 0 và x/a+2b+c=y/2a+b-c=z/4a-4b+c
Chứng minh rằng: a/x+2y+z=b/2x+y-z=c/4x-4y+z (với giả thiết các tỉ số đều có nghĩa)
Chứng minh rằng nếu có : a(y+z) = b(z+x) = c(x+y) . Trong đó a , b , c là các số khác nhau và khác 0 thì y-z / a(b-c) = z-x / b(c-a) = x-y /c(a-b)
Chứng minh rằng nếu có : a(y+z) = b(z+x) c(x+y) . Trong đó a , b , c là các số khác nhau và khác 0 thì : y-z / a(b-c) = z-x / b(c-a) = x-y / c(a-b)
cho các số a, b, c, x, y, z thỏa mãn a + b + c = a^2 + b^2 + c^2 = 1 và x/a = y/b = z/c ( các tỉ số đều có nghĩa )
Chứng minh: x^2 + y^2 + z^2 = ( x + y + x )^2
a, cho 3 số x, y, z có tổng khác 0 thỏa mãn điều kiện \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Tính giá trị biểu thức \(M=\frac{x^{670}.y^{670}.z^{670}}{y^{2012}}\)
b, CMR: Nếu a + c = 2b và 2bd = c(b + d) thì \(\frac{a}{b}=\frac{c}{d}\)với b, d khác 0
c, Cho x, y, z là các số khác 0 và x2 = yz; y2 = xz; z2 = xy
CMR: x = y = z
Cho các số a, b, c khác 0. Tính giá trị của biểu thức : \(A=x^{2oo3}+y^{2oo3}+z^{2oo3}.\)
Biết x, y, z thỏa mãn điều kiện \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
cho số a,b,c,x,y,z thỏa mãn a+b+c=a mũ 2 + b mũ 2 +c mũ 2=1 và x/a = y/b = z/c (các tỉ số đều có nghĩa) CHứng minh x mũ 2 +y mũ 2 +z mũ 2 =(x+y+z) mũ 2
a) Cho x, y, z là 3 số dương. CMR có tam giác mà các cạnh của nó có độ dài là a, b, c với: a=x+y; b=y+z; c=z+x.
b) Cho a, b, c là các độ dài 3 cạnh của một tam giác. CMR có các số dương x, y, z sao cho: a=x+y; b=y+z; c=z+x.
Giả sử x = a m ; y = b m (a, b, m ∈ Z; m > 0) và x < y. Hãy chứng minh nếu chọn z = a + b 2 m thì ta có x < z < y.
Hướng dẫn: Sử dụng tính chất: Nếu a, b, c ∈ Z và a < b thì a + c < b + c