\(Cho:\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}CMR\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho :\(\frac{Bz-Cy}{A}=\frac{Cx-Az}{B}=\frac{Ay-Bx}{C}\)
CMR : \(\frac{x}{A}=\frac{y}{B}=\frac{z}{C}\)
Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) .CMR: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Biết rằng \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\) .CMR: x : y : z = a : b : c
Các số a,b,c,x,y,z thỏa mãn điều kiện \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\).CMR :\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(Cho:a,b,c,x,y,z\)thỏa mãn:\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)\(CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho day ti so : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c};\)
CMR: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
cho \(\frac{bz-cy}{a}\)+\(\frac{cx-az}{b}+\frac{ay-bx}{c}\)CMR \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)