Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Lê

\(cho\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)tính P=\(\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}\)

 

Dương Nguyễn
15 tháng 7 2016 lúc 12:05

Đặt bài toán phụ : Chứng minh nếu \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

Thật vậy :

 \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(a+b+c=0\Rightarrow\left(a+b+c\right)^3=0\)

\(a+b=-c\)

\(b+c=-a\)

\(c+a=-b\)

\(\Rightarrow\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=-3\left(-c\right)\left(-b\right)\left(-a\right)\)

\(=3abc\)

Trở lại bài toán chính :

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)

\(\Rightarrow\frac{yz+xz+xy}{xyz}=0\)

\(\Rightarrow xy+xz+yz=0\)

\(\Rightarrow\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)=3\left(xy\right)\left(xz\right)\left(yz\right)=3x^2y^2z^2\)

Lại có:

\(P=\frac{xy.y^2x^2}{x^2y^2z^2}+\frac{xz.z^2.x^2}{x^2y^2z^2}+\frac{z^2.y^2.yz}{x^2y^2z^2}\)

\(=\frac{\left(xy\right)^3}{x^2y^2z^2}+\frac{\left(xz\right)^3}{x^2y^2z^2}+\frac{\left(yz\right)^3}{x^2y^2z^2}\)

\(=\frac{\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)}{x^2y^2z^2}\)

Thay \(\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)=3x^2y^2z^2;\)ta có:

\(P=\frac{3x^2y^2z^2}{x^2y^2z^2}\)

\(=3\)

Vậy \(P=3.\)


Các câu hỏi tương tự
no name
Xem chi tiết
Pham thi thu Phuong
Xem chi tiết
đáng Phạm xXx holic
Xem chi tiết
Thanh Do
Xem chi tiết
Nguyen Ha Phuong
Xem chi tiết
Mashiro Rima
Xem chi tiết
Trần Kim Anh
Xem chi tiết
luyen hong dung
Xem chi tiết
Đỗ Uyển Dương
Xem chi tiết