Rút gọn biểu thức :
\(P=\left(\frac{x+\sqrt{x}-4}{x-2\sqrt{x}-3}+\frac{\sqrt{x}-1}{3-\sqrt{x}}\right):\left(1-\frac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
( \(x\ge0;x\ne4;x\ne9\)
Rút gọn các biểu thức sau:
C=\(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-3}\)(với \(x\ge0\),\(x\ne4,x\ne9\))
D=\(\left(\frac{\sqrt{x}+2}{x-9}-\frac{\sqrt{x}-2}{x+6\sqrt{x}+9}\right).\frac{x\sqrt{x}-3x-9\sqrt{x}-27}{\sqrt{x}-2}\)(với \(x\ge0,x\ne4,x\ne9\))
Rút gọn \(\left(\frac{\sqrt{X}}{3+\sqrt{X}}+\frac{X+9}{9-X}\right):\frac{X-3\sqrt{X}}{2\sqrt{X}+4}\left(X>0,X\ne9\right)\)
cho biểu thức: P=\(\left[1-\frac{x-3\sqrt{x}}{x-9}\right]:\left[\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9x}{x+\sqrt{x}-6}\right]\) \(\left(x\ge0;x\ne9;x\ne4\right)\)
a) Rút gọn P
b) Tìm giá trị của x để P=1
Rút gọn biểu thức :
\(P=\left(\frac{x+\sqrt{x}-4}{x-2\sqrt{x}-3}+\frac{\sqrt{x}-1}{3-\sqrt{x}}\right):\left(1-\frac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)
( \(x\ge0;x\ne4;x\ne9\)
Mua VIP sao giáo viên không trả lời ?
A=\(\left(\frac{3\sqrt{x}}{\sqrt{x}+2}-\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{8\sqrt{x}}{x-4}\right):\left(2-\frac{2\sqrt{x}+3}{\sqrt{x}+2}\right)\left(x\ge0,x\ne4\right)\)
a, Rút gọn A.
b, Tìm GTNN của A khi x>4
Rút gọn các biểu thức sau:
\(C=\left(\dfrac{\sqrt{x}+1}{x-4}-\dfrac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-2}\)
(với \(x\ge0,x\ne4,x\ne9\))
\(D=\left(\dfrac{\sqrt{x}+2}{x-9}-\dfrac{\sqrt{x}-2}{x+6\sqrt{x}+9}\right).\dfrac{x\sqrt{x}+3x-9\sqrt{x}-27}{\sqrt{x}-2}\)
(với \(x\ge0,x\ne4,x\ne9\))
Cho hai biểu thức: A=\(\sqrt{\left(1-\sqrt{5}\right)^2-\frac{5-2\sqrt{5}}{\sqrt{5}}}\)
P= \(\left(\frac{3\sqrt{x}+6}{x-4}+\frac{\sqrt{x}}{\sqrt{x}-2}\right):\frac{x-9}{\sqrt{x}-3}\)\(\left(x\ge0;x\ne4;x\ne9\right)\)
a. Rút gọn A,P
b. Tìm các giá trị của x để 2P-A<0
rút gọn:
a)\(\left(\frac{1}{2+2\sqrt{x}}+\frac{1}{2-2\sqrt{x}}-\frac{x^2+1}{1-x^2}\right)\times\left(1+\frac{1}{x}\right)\)
b)\(\left(\frac{2\sqrt{xy}}{x-y}+\frac{\sqrt{x}-\sqrt{y}}{2\sqrt{x}+\sqrt{y}}\right)\times\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
c)\(\left(\frac{x-1}{\sqrt{x}-1}+\frac{x\sqrt{x}-1}{1-x}\right)\div\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}+1}\)