Cho \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{100}\)Chứng mainh:\(1< A< \frac{7}{3}\)
Chứng minh:
\(\frac{7}{12}<\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{40}<\frac{5}{6}\)
Chứng minh: \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}< \frac{3}{2}\).
Chứng minh rằng: \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
Chứng minh:
\(\frac{3}{5}
Chứng minh
\(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
Chứng minh
\(\frac{11}{15} < \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+....+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
Chứng minh:
c.\(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{59}+\frac{1}{60}< \frac{3}{2}\)
b.\(\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{113}< \frac{1}{2}\)
a.\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+\frac{1}{144}+\frac{1}{196}< \frac{1}{2}\)
A=\(\frac{1}{^22}+\frac{1}{^23}+\frac{1}{^2\text{4}}+......+\frac{1}{^2100}\)
Chứng minh hơn 3/4
B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{100^2}\)<1