khowaaaaaaa
tui mới học lớp 6 mà sao trả lời được mà hỏi
tìm đứa khác giúp đi cưng ok
khowaaaaaaa
tui mới học lớp 6 mà sao trả lời được mà hỏi
tìm đứa khác giúp đi cưng ok
cho a,b,c khác 0 thỏa mãn:
a+b+c khác 0 và a3+b3+c3=3abc.Tính giá trị biểu thức:A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a,b,c khác 0 thỏa mãn
a+b+c khác 0 và a3+b3+c3=3abc.Tính giá trị biểu thức:A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho \(a^3+b^3+c^3=3abc\)và \(abc\ne0;a+b+c=0\)
CMR \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=0\)
\(Cho\)\(abc\ne0\)\(và\)\(a^3+b^3+c^3=3abc\)
\(Tính\)\(A=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
cho \(\left(a+b+c\right)^2=a^2+b^2+c^2\)\(\left(a,b,c\ne0\right)\)
Chứng minh rằng: \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Cho a,b,c>0 và abc=1. CMR:
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)
Cho a,b,c>0 và abc=1. Chứng minh: \(\frac{1}{a^3.\left(b+c\right)}+\frac{1}{b^3.\left(a+c\right)}+\frac{1}{c^3.\left(b+c\right)}\ge\frac{3}{2}\)
Cho a,b,c > 0, abc=1
CMR:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}=\frac{b^3}{\left(1+c\right)\left(1+a\right)}=\frac{c^3}{\left(1+b\right)\left(1+a\right)}\)>=\(\frac{3}{4}\)
Cho tam giác ABC có độ dài 3 cạnh a, b, c thỏa mãn \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}=9\)
Chứng minh rằng tam giác ABC đều