Ta có: \(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)
\(\Leftrightarrow1\ge4a\left(b+c\right)\)(*)
Lại có: \(\left(b+c\right)^2\ge4bc\)(**)
Nhân 2 vế (*) và(**), ta có:
\(\left(b+c\right)^2\ge16abc\left(b+c\right)\)
Mà \(b;c\ge0\Rightarrow b+c\ge0\)
\(\Rightarrow b+c\ge16abc\)
Vậy \(b+c\ge16abc\)
ta co:b+c=(b+c)(a+(b+c))2 (vi a+b+c=1)
vi (a+(b+c))2>=4a(b+c)
=>b+c>=(b+c)2.4a
lai co (b+c)2>=4bc
=>b+c>=4bc.4a=16abc