Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Blue Frost

\(Cho:a,b,c\ge0.CMR:3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)

Thanh Tùng DZ
16 tháng 5 2020 lúc 17:49

BĐT tương đương với :

\(3a^4+3b^4+3c^4-\left(a^4+a^3b+a^3c+b^4+ab^3+b^3c+ac^3+bc^3+c^4\right)\ge0\)

\(\Leftrightarrow\left(a^4+b^4-a^3b-ab^3\right)+\left(b^4+c^4-b^3c-bc^3\right)+\left(a^4+c^4-a^3c-ac^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)+\left(b-c\right)^2\left(b^2+bc+c^2\right)+\left(a-c\right)^2\left(a^2+ac+c^2\right)\ge0\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
28 tháng 5 2020 lúc 10:43

BĐT cần chứng minh tương đương với:

\(3a^4+3b^4+3c^4\ge a^4+b^4+c^4+ab^3+bc^3+ca^3+a^3b+b^3c+c^3a\)

\(\Leftrightarrow2a^4+2b^4+2c^4-ab^3-bc^3-ca^3-a^3b-b^3c-c^3a\ge0\)

Theo AM - GM ta dễ có:

\(a^4+a^4+a^4+b^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)

\(b^4+b^4+b^4+c^4\ge4\sqrt[4]{b^{12}c^4}=4b^3c\)

\(c^4+c^4+c^4+a^4\ge4\sqrt[4]{c^{12}a^4}=4c^3a\)

Cộng vế theo vế ta có đpcm

Khách vãng lai đã xóa

Các câu hỏi tương tự
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
NONAME
Xem chi tiết
Harry James Potter
Xem chi tiết
Thanh Trần
Xem chi tiết
Nguyễn Trọng Tấn
Xem chi tiết
tth_new
Xem chi tiết
Edogawa Conan
Xem chi tiết
Xem chi tiết
Kaneki Ken
Xem chi tiết