Bài 1: Chứng minh:
a, ( a+b+c)(a\(^2\)+b\(^2\)+c\(^2\)-ab-ac-bc)=a\(^3\)+b\(^3\)+c\(^3\)-3abc
b, ( 3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
c, 2(a+b+c)(\(\dfrac{b}{2}\)+\(\dfrac{c}{2}\)-\(\dfrac{a}{2}\))=2bc+c\(^2\)+b\(^2\)-a\(^2\)
GIÚP MÌNH VỚI THỨ4 ĐI HỌC RÙI
cho a^2+b^2+c^2=ab+bc+ac.
Chứng minh:a=b=c
Cho a,b,c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
\(ab+bc+ca\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
Cho (a+b+c)2=3(ab+bc+ca).Chứng minh a=b=c
Cho a,b,c>0. Chứng minh: \(a^2+b^2+c^2\ge3\left(ab+bc+ca\right)\) và \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\ge\frac{10}{3}\)
Cho a,b,c > 0 và a+b+c =1. Chứng minh ab/(c+ab) + bc/(a+bc) + ca/(b+ca) > hoặc = 3/4
cho các số dương a,b,c thõa 3(ab + bc + ca)=1. Chứng minh a/(a^2-bc+1) + b/(b^2 - ca +1) +c/(c^2 -ba +1) =>1/(a+b+c)
cho a,b,c bất kì. chứng minh rằng:
(a+b+c)2≥3(ab+bc+ca)
Cho (a+b+c)^2=3(ab+bc+ca) . Chứng minh a=b=c