a/tính nhanh
B=\(\left(1+\frac{7}{9}\right)\times\left(1+\frac{7}{20}\right)\times\left(1+\frac{7}{33}\right)\times...\times\left(1+\frac{7}{2900}\right)\)
b/ cho tổng
\(C=a_1+a_2+a_3+...+a_n\)(với\(a_i\)=\(\left(1,n\right)\)\(\in Z\)và n là số lẻ
*nếu C chẵn hãy CMR ít nhất một trong các số\(a_1;a_2;a_3;...;a_n\) có một số chẵn
* gọi \(b_1;b_2;b_3;...;b_n\)là một hoán vị của dãy \(a_1;a_2;a_3;...;a_n\)
a/tính nhanh
\(B=\left(1+\frac{7}{9}\right)\times\left(1+\frac{7}{20}\right)\times\left(1+\frac{7}{33}\right)\times...\times\left(1+\frac{7}{2900}\right)\)
b/ cho tổng
\(C=a_1+a_2+a_3+...+a_n\) với \(a_i=\left(1,n\right)\in Z\)và n là số lẻ
*nếu C chẵn hãy CMR ít nhất một trong các số\(a_1;a_2;a_3;...;a_n\)
* gọi là một hoán vị của dãy \(b_1;b_2;b_3;...;b_n\)llaf một hoán của dãy \(a_1;a_2;a_3;...;a_n\)
GIÚP MÌNH NHA MÌNH CẦN GẤP
Cho \(a_1\);\(a_2\);\(a_3\);...;\(a_7\) là các số nguyên và \(b_1\);\(b_2\);\(b_3\);...;\(b_n\) cũng là các số nguyên đó, nhưng lấy theo thứ tự khác.
Chứng minh rằng\(\left(a_1-b_1\right)\left(a_2-b_2\right)\left(a_3-b_3\right)...\left(a_7-b_7\right)\)là số chẵn
BÀI TOÁN QUỐC TẾ:
Cho \(a_1\);\(a_2\);\(a_3\);....;\(a_7\) là các số nguyên và \(b_1\);\(b_2\);\(b_3\);...;\(b_n\) cũng là các số nguyên đó, nhưng lấy theo thứ tự khác.
Chứng minh rằng \(\left(a_1-b_1\right)\left(a_2-b_2\right)\left(a_3-b_3\right)...\left(a_7-b_7\right)\) là số chẵn
(Thi hs giỏi ANH QUỐC -1968)
Cho \(a_1,a_2,...,a_7\) là các số nguyên và\(b_1,b_2,...,b_7\) cũng là các số nguyên đó, nhưng lấy theo thứ tự khác.
Chứng minh rằng \(\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_7-b_7\right)\)là số chẵn
Đề thi hsg Anh Quốc-1968
CHO N LÀ SỐ NGUYÊN
\(A_1;A_2;...;A_N\) BIẾT \(A_1.A_2+A_2.A_3+....+A_N.A_1=0\). HỎI N CÓ THỂ BẰNG 2018 KHÔNG
Cho các số \(a_1\),\(a_2\),\(a_3\),...,\(a_n\) trong đó mỗi số nhận giá trị bằng 1 hoặc -1 . Biết \(a_1\)\(a_2\)+ \(a_2\)\(a_3\)+\(a_3\)\(a_4\)+...+\(a_n\)\(a_1\)=0 . Hỏi n có thể bằng 2014 được không?
Cho các số \(a_1\),\(a_2\),\(a_3\),...,\(a_n\) trong đó mỗi số nhận giá trị bằng 1 hoặc -1 . Biết \(a_1\)\(a_2\)+ \(a_2\)\(a_3\)+\(a_3\)\(a_4\)+...+\(a_n\)\(a_1\)=0 \(\Leftrightarrow\)n chia hết cho 4
cho các số nguyên\(a_1+a_2+a_3+.....+a_{2003}\)
thỏa mãn: \(a_1+a_2=a_3+a_4=a_5+a_6=......=a_{2001}+a_{2002}=a_{2003}+a_1=1\)
tính \(a_1;a_{2003}\)