Đặt \(\frac{x}{z}=\frac{z}{y}=k\)
\(\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)
Khi đó : \(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+z^2}{y^2+\left(yk\right)^2}=\frac{z^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=\frac{z^2}{y^2}=\frac{\left(y.k\right)^2}{y^2}=k^2\)
\(\frac{x}{y}=\frac{y.k^2}{y}=k^2\)
=> \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\left(\text{đpcm}\right)\)
\(\frac{x}{z}=\frac{z}{y}\)
cmr: \(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)
\(\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2\)
áp dụng t/c dãy tỉ số = nhau
\(\left(1\right)\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{\left(x^2+z^2\right)}{\left(z^2+y^2\right)}\)
vì \(\left(2\right)\frac{x}{z}=\frac{z}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}\)
từ (1) và (2) =>\(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)
\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}(y2+z2x2+z2)=yx
\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2zx=yz⇒(zx)2=(yz)2
áp dụng t/c dãy tỉ số = nhau
\left(1\right)\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{\left(x^2+z^2\right)}{\left(z^2+y^2\right)}(1)(zx)2=(yz)2=(z2+y2)(x2+z2)
vì \left(2\right)\frac{x}{z}=\frac{z}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}(2)zx=yz⇒yx=zz
từ (1) và (2) =>\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}(y2+z2x2+z2)=yx